Vascular Interfaces for Brain Imaging

PI: Robert Desimone
Massachusetts Institute of Technology
Title: “Vascular Interfaces for Brain Imaging and Stimulation”
BRAIN category: Next Generation Human Imaging (RFA MH-14-217)

Dr. Desimone’s project will access the brain through its network of blood vessels to less invasively image, stimulate and monitor electrical and molecular activity than existing methods.

Ultrasonic neuromodulation in vivo

PI: Doris Ying Tsao
California Institute of Technology
Title: “Dissecting human brain circuits in vivo using ultrasonic neuromodulation”
BRAIN category: Next Generation Human Imaging (RFA MH-14-217)

In rodents, monkeys and eventually humans, Dr. Tsao’s team will explore use of non-invasive, high resolution ultrasound to impact neural activity deep in the brain and modify behavior.

MRI Neuro-Electro-Magnetic Oscillations

Principal Investigator: Allen W Song
Duke Institute for Brain Sciences
Title: “Path Toward MRI with Direct Sensitivity to Neuro-Electro-Magnetic Oscillations”
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

Dr. Song’s group will develop a scanner technology sensitive enough to image brain activity in high resolution by directly tuning in the electromagnetic signals broadcast by neurons.

Imaging in vivo neurotransmitter modulation

Principal Investigator: Dean Foster Wong
Johns Hopkins University
Title: Imaging in vivo neurotransmitter modulation of brain network activity in realtime
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

Dr. Wong and colleagues will explore the possibility that newly developed infrared chemical tags may be used for minimally invasive imaging of rapidly changing human brain chemical messenger activity – with greater time resolution.

Magnetic Particle Imaging (MPI)

Principal Investigator: Lawrence Wald
Neuroscience@Harvard
Title: “Magnetic Particle Imaging (MPI) for Functional Brain Imaging in Humans”
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

The Wald team plans to use an iron-oxide contrast agent to track blood volume, which will permit dramatically more sensitive imaging of human brain activity than existing methods.

MRI Corticography (MRCoG)

Principal Investigator: David Alan Feinberg
Helen Wills Neuroscience Institute
Title: “MRI Corticography (MRCoG): Micro-scale Human Cortical Imaging”
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

To image the activity and connections of the brain’s cortex on a micro scale – with dramatically higher resolution than existing scanners – Dr. Feinberg’s group will employ high sensitivity MRI coils that focus exclusively on the brain’s surface.

Advancing MRI & MRS Technologies

Principal Investigator: Wei Chen
Institute for Translational Neuroscience, University of Minnesota
Title: “Advancing MRI & MRS Technologies for Studying Human Brain Function and Energetics”
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

Dr. Chen’s team will achieve unprecedented higher resolution magnetic resonance imaging and spectroscopy scanning by integrating ultra-high dielectric constant material and ultra-high-field techniques.

Imaging Brain Function with Portable MRI

Principal Investigator: Michael Garwood
Institute for Translational Neuroscience, University of Minnesta
Title: “Imaging Brain Function in Real World Environments & Populations with Portable MRI”
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

By employing smaller, less cumbersome magnets than used in existing MRI, Dr. Garwood and colleagues will create a downsized, portable, less expensive brain scanner.

Micro-Dose, Wearable PET Brain Imager

Principal Investigator: Julie Brefczynski-Lewis
WVU Center for Neuroscience
Title: Imaging the Brain in Motion: The Ambulatory Micro-Dose, Wearable PET Brain Imager
BRAIN Category: Next Generation Human Imaging (RFA MH-14-217)

Dr. Brefczynski-Lewis and co-workers will engineer a wearable PET scanner that images activity of the human brain in motion – for example, while taking a walk in the park.

Skip to toolbar